HUMANITY'S JOURNEY TO INTERSTELLAR SPACE

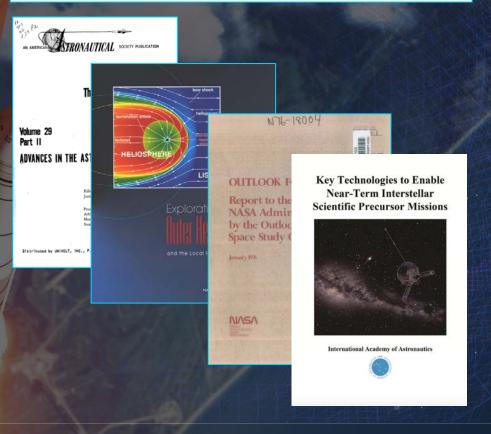
Interstellar Probe: Overview

Ralph L. McNutt, Jr. Study Principal Investigator Johns Hopkins University Applied Physics Laboratory ralph.mcnutt@jhuapl.edu

A "Pragmatic Interstellar Probe"...

 ... is a mission through the outer heliosphere and to the nearby "Very Local" interstellar medium (VLISM)

 uses today's technology to take the first explicit step on the path of interstellar exploration (faster than the Voyagers – on an SLS or commercial equivalent)

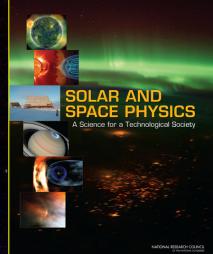

... can pave the way, scientifically, technically, and programmatically for more ambitious future journeys (and more ambitious science goals)

Science Aspects of a Mission Beyond the Planets

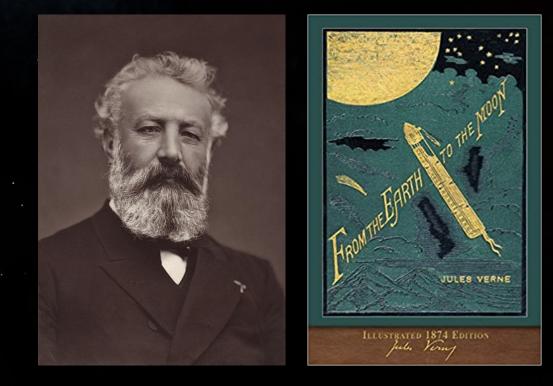
LEONARD D. JAFFE AND CHARLES V. IVIE

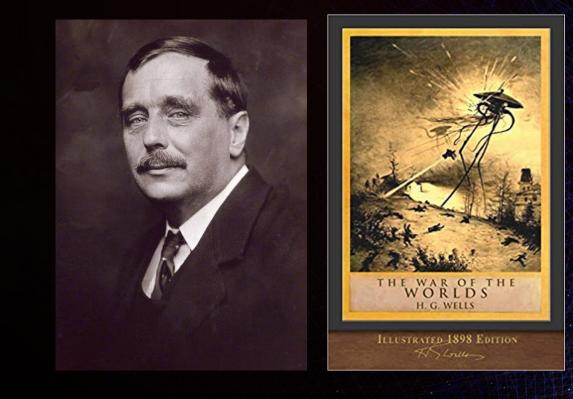
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91103

Received July 26, 1978; revised April 10, 1979


Study Status

- The Johns Hopkins University Applied Physics Laboratory has been tasked by the NASA Heliophysics Division to (re-)study an Interstellar Probe mission
 - Phase 1: 13 June 2018 12 June 2019
 - Phase 2 "Next Phase Concept Development":
 25 July 2019 30 April 2022
- Technical Report to be delivered late 2021
 for input to next Solar and Space Physics
 Decadal Survey



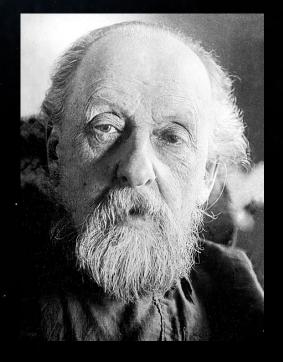

A Decadal Research Strategy in Solar and Space Physics

In the beginning, there is a confluence of ideas and people (TRL "0")...

Jules Verne (1828 – 1905): From the Earth to the Moon 1865

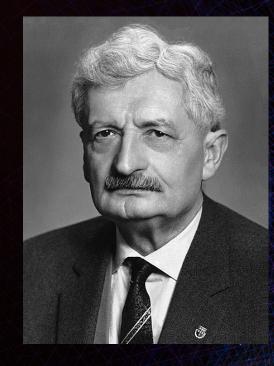
H. G. Wells (1866 – 1946): The War of the Worlds 1898

... and knowledge (TRL 1) ...

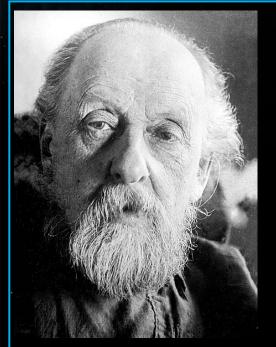

Acc. 90-105 - Science Service, Records, 1920s-1970s, Smithsonian Institution Archives

Pierre Curie (1859-1906) and Marie Sklodowska Curie (1867-1934)

Jointly awarded the Nobel Prize for Physics in 1903 for discovery of the radioactive elements polonium and radium


3rd Interstellar Probe Exploration Workshop

...which inspires those who follow (TRL 2)



Konstantin Eduardovich Tsiolkovsky Константин Эдуардович Циолковский 1857 - 1935

APL

Robert Esnault-Pelterie 1881 - 1957 Robert Hutchings Goddard 1882 - 1945 Hermann Julius Oberth 1894 - 1929

The Idea of Travel to the Space Between the Stars ... and the Stars Themselves ... is not New

Konstantin Eduardovich

Tsiolkovsky Константин Эдуардович Циолковский 1857 - 1935

(APL)

INVESTIGATION OF OUTER SPACES BY ROCKET DEVICES - 1911

...were it possible to accelerate sufficiently the disintegration of radium or other radioactive bodies, ... then its use might give - in similar other conditions, ... a velocity of the reactive device, by which access to the closest Sun (star) would come down to 10 - 40years... a pinch of radium would be sufficient, to enable the rocket weighing a ton, to break all relations with the solar system."

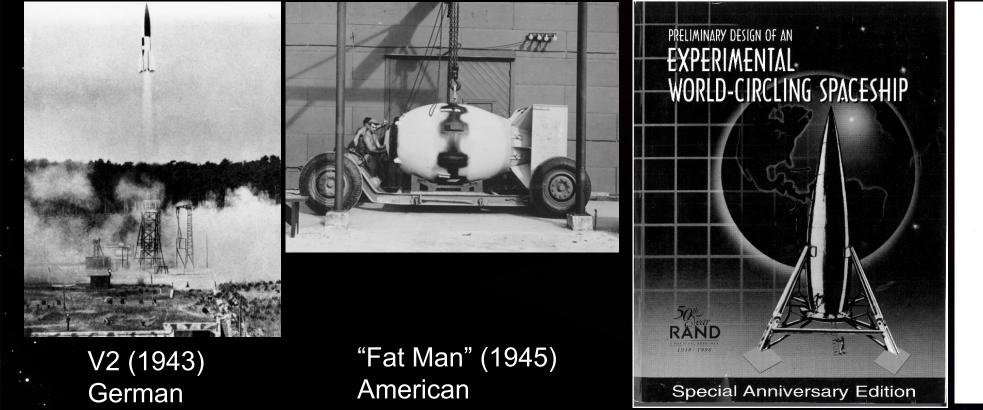
"It may be, that with the help of electricity, it will be possible by and by, to impart tremendous velocity to the particles, being ejected from the reactive devices."

THE ULTIMATE MIGRATION – 14 January 1918

"Will it be possible to travel to the planets which are around the fixed stars, when the Sun and the Earth have cooled to such an extent that life is no longer possible on the Earth?

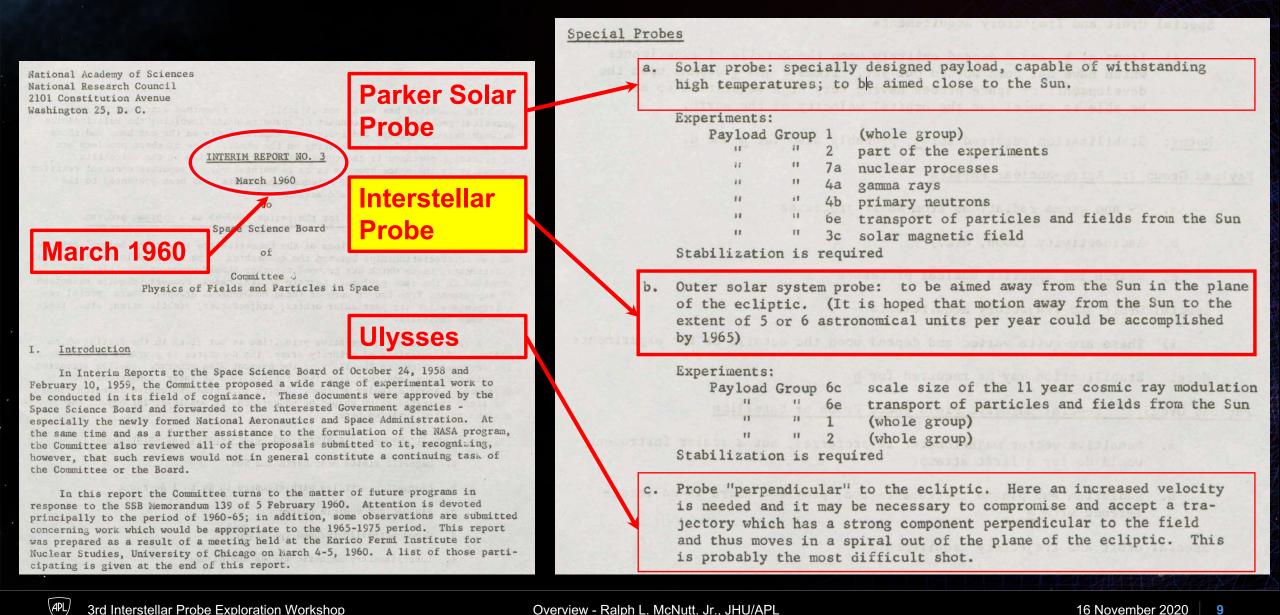
To answer this question, it is necessary to answer two others; first, will it be possible to unlock, and control, intraatomic energy?..."

"If it is possible to unlock, and to control, intra-atomic energy, or even to store up to great quantities of energy in artificial atoms, the transportation can be a comparatively simple matter."



Robert Hutchings Goddard 1882 - 1945

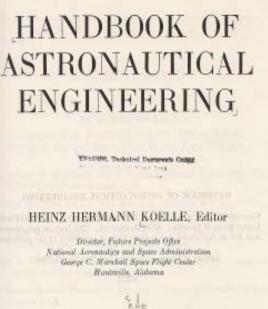
Mission Need + Demonstrated prototypes Led to Funds to go to the Next Level (TRL 3) – Space Nuclear Power


Parts from World War II

Mission need for "Cold War" 500 W electric power supply for satellite (SNAPs for Project Feed Back)

DOUGLAS AIRCRAFT COMPANY, INC. SANTA MONICA FLANT ENGINEERING DIVISION presents PRELIMINARY DESIGN OF AN XPERIMENTAL WORLD-CIRCLING SPACESHIN Report No. SM-11827 Contract W33-038 ac+14105 May 2, 1946

One of Three "Special Probes" ... in March 1960


3rd Interstellar Probe Exploration Workshop

The Rationale Has Not Changed

"There seem to be several critical objectives of space-flight operations.

- "The first principal objective is the scientific exploration of space, the planets, and later, the stars.
- "This is an effort to learn the basic physics, chemistry, medicine, or biology of these new places.
- "It includes the invention, research, and development of new instruments and scientific devices.

G. P. Sutton - § 1.391 of "Trends in Astronautical Developments" in Handbook of Astronautical Engineering, ed. H. H. Koelle, 1961.
(5 September 1920 – 15 October 2020)

K ISTER

FIRST ROITION

New York Toronto London McGRAW-HILL BOOK COMPANY, INC. 1961

For Any Mission There Are Four Key Elements

- The case for going
- The means to go
- Agreement to goFunds in place

Science/Politics Technology Strategy Policy

A well-thought-out systems approach incorporating all key elements is required to promote and accomplish a successful exploration plan

The Questions are not new...

JPL study of 1976 – 1977 (the eve of Voyager):

Science Aspects of a Mission Beyond the Planets

LEONARD D. JAFFE AND CHARLES V. IVIE

Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91103

Received July 26, 1978; revised April 10, 1979

Primary Objectives

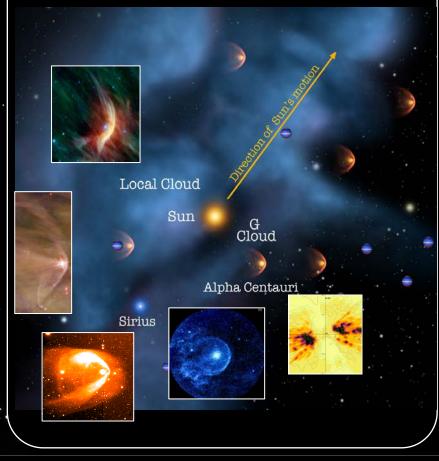
APL

- (1) Characterize the heliopause
- (2) Determine characteristics of the interstellar medium
- (3) Improve the stellar and galactic distance scale
- (4) Determine characteristics of cosmic rays

(5) Determine characteristics of the solar system as a whole **Secondary Objectives**

(1) Determine characteristics of Pluto and its satellites and rings, if any.(2) Determine characteristics of distant galactic and extragalactic objects

(3) Evaluate problems of scientific observations of another solar system from a spacecraft

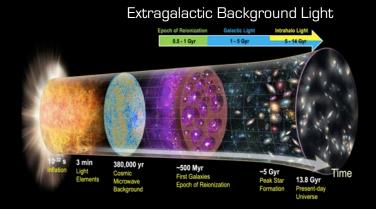

32,000 kg launch mass 500 kWe, NEP system 20,200 kg of Hg propellant Pluto orbiter

Interstellar Probe Science Goals and Opportunities

Through Our Habitable Astrosphere and Into The Unknown

Primary Goal

Our Habitable Astrosphere and The Unexplored Interstellar Medium



and the second sec

Astrophysics Opportunity

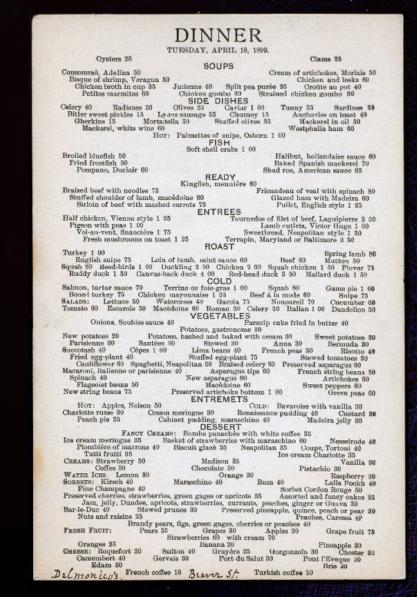

Formation of Early Galaxies and Stars

Planetary Science Opportunity

Evolution of Planetary Systems

Dust Disk

Notional Science Traceability Matrix Identifying Requirements for Mission Designs


Goal	Questions	Objectives	Measurements	Mission Requirements			
		Global Structure	Particles, fields, waves, ENA	Spinning, external view, ≥200 AU			
_		Ribbon/Belt	ENA, particles, fields	Spinning, image, in-situ ribbon, ≥200 AU			
e C		Force Balance	Particles, fields, ENA	Spinning, 90-300 AU			
lel	What is the Global Dynamical Nature of the Heliosphere as it plows through the ISM?	Astrophysical Shock Acceleration	Particles, fields	Spinning∕multiple heads, flanks, ≥90 AU			
lst ace		Nature and dynamics of Heliopause	Particles, fields, waves	Spinning, wire∕rigid, ≥100 AU			
stropshere r Space		GCR Shielding	Particles, fields	Spinning∕ multiple heads, ≥100 AU			
		Solar perturbations in LISM	Particles, fields	Spinning∕ multiple heads, ≥300 AU			
A IIa		Bowshock	Particles, fields, nanodust	Spinning, ≥150 AU			
ole te		Hydrogen Wall	UV, particles, fields, neutrals	Near ram, spinning, ≥300 AU			
ak rs		Cloud properties	Particles, fields, neutrals	Near ram, ≥200 AU			
bit te	What are the properties	Gas and dust flows	Particles, neutrals, dust	Near ram, ≥200 AU			
Our Habitable Ast Interstellar (of the Interstellar Cloud	Boundary region	UV, particles, neutrals	Near ram, ≥400 AU			
	surrounding the Heliosphere and what	Governing processes of ionization	UV, particles, neutrals	Near ram, ≥200 AU			
	does it teach us about our place in the galaxy?	Galactic Evolution and Nucleosynthesis	Elements, isotopes, dust	Near ram, ≥400 AU			
		Building blocks of planetary systems	Dust	Near ram, ≥200 AU			

APL

A "Menu" Approach

- Engage the science and technical communities
- Assemble a "Menu" of what has been done and what can be done
- "Ordering" from the menu will be a charge to a future Science Definition Team – at NASA's discretion

 But one always would like the assurance about what orders can be placed – and delivered – and what they would cost

Delmonico's – 18 April 1899 "Tournedos of filet of beef... \$2.50" (!!)

The Central Technical Question Has Always Been Propulsion

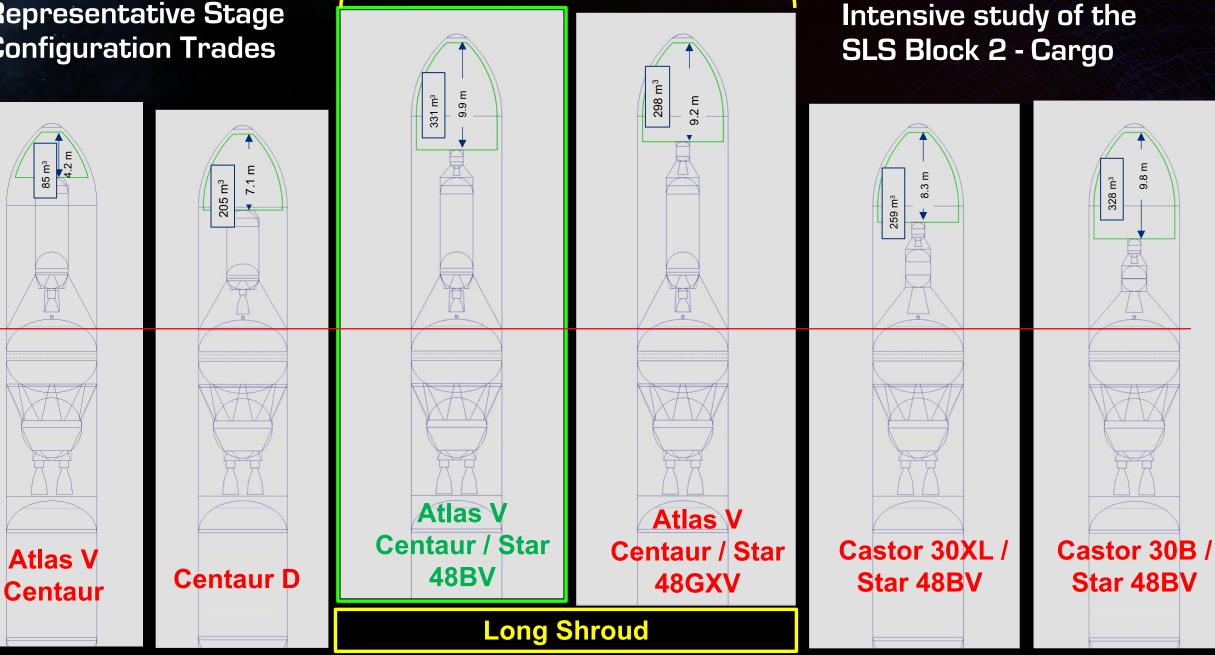
 "Near-future" capabilities have always been the backdrop for defining requirements

• The real issue: unite compelling science with engineering and technical reality

IATIONAL RESEARCH COUNCIL

The Sun to the Far

Solar and Space Physics



Engineering Requirements

- Broad engineering requirements frame the study
- Readiness: Launch no later than 1 January 2030
 Downlink: Operate from 1000 astronomical units
 Power (BOM): No more than 600 Watts required
 (EOM): No less than half of the BOM available
 Longevity: Lifetime of not less than 50 years

These are INDEPENDENT of each other – the starting point

Representative Stage Configuration Trades

APL,

	Oct 19	Nov 19	Dec 19	Jan 20	Feb 20	Mar 20	Apr 20	May 20	Jun 20	July 20	Aug 20		Nov 20		Dec 21	
	Wksp 2019								Prelim Results	Trade Study		Interim Report	Wksp 2020		Final Report	
				ures, long modes	-lasting		op proces ccelerated	s of failure I testing	modes							
Scien	ce	Candie		ad compo perating re			 Define payloa 	e baseline ads								
ConO	ps	Traject Launch Vehicl	า						Со	ncurre	ent					
		Comr	n and	GNC tr	ades	En				gineer	ing 🚪	Interim Report	Work -shop Input	Revise Report	Final Rprt	
			Shield de control emp coati			 If yes, ConO 	define ps parame	eters		Study			t,			
		Mechanical Design spacecraft layout 											his Workshop is a ommunity "Sanity			
		Power • Compa		TG, GPHS	S-RTG and	MHW-RTG using GPHS modules						Check" on Progress				
•	3rd Interstell	ellar Probe Exploration Workshop Overview - Balph I. McNutt Jr. (HU/API											10			

Spacecraft Reliability / Longevity

- Defining success with robustness in science requirements
- Modeling spacecraft configurations
- Mining historical record of longlived missions

Examining Physics-of-Failure
 methods for key technologies

(APL)

Review of Instrument Possibilities

Spacecraft →	Interstellar Probe 1990	Small Interstellar Probe 1994	A Sole/Ad Astra 1997	IPSTDT 1999	NIAC fII (2004)	IIE Vision (2005)	IIE (TRL 9) (2005)	NEP Vision (2008)	IHP (2007)	Helios (1974)	Pioneer (1972)	Voyager (1997)	ACE (1997)	New Horizons (2006)	Ulysses (1986)	IBEX (2008)	STEREO	Van Allen Probes (2012)	IMAP (De
Instrument	ellar 1990	all ellar 1994	⊭/Ad 1997	1999	(2004)	sion 5)	(L 9) 5)	ision 8)	007)	1974)	(1972)	(1997)	997)	rizons 6)	(1986)	2008)	(2006)	llen (2012)	(Decadal)
Magnetometer (type not specified)	4	1	0.25	0.5	1.89			1.8										20.9	3
Vector helium magnetometer						8.81			4.5	4.40	2.7				2.332				
Fluxgate magnetometer							5.6		1.5	4.75	0.3	5.6	4.1		2.4		0.27		
Plasma wave sensor	11	3	2.25	0.5	1.48	10.0	7.17	7	5.8	NA		9.1			7.4		13.23	27.4	
Plasma	20	10	2	8.5	0.97	2.00	6.2	16	2	15.696	5.5	9.9	6.8	3.3	6.7		2.37	65.6	7
Plasma composition	17						5.97	8	1.5				14.6		5.584		11.4		
Energetic particle spectrometer	8	3	0.5	1.5	0.80	1.50	37.4	15	3.0	3.50	3.3	7.5	60.2	1.5	5.8		1.63	6.6	10
Cosmic-ray spectrometer: anomalous and galactic cosmic rays	22			2.5	0.84	3.50	51.1	12	3.5		3.2	7.5	54.0		14.6		1.92		5
Cosmic-ray spectrometer: electrons/positrons, protons, helium	10	2.5		2.4		2.30	14.6	4	1.5	7.15	1.7		12.8				1.98	9.2	3
Geiger tube telescope											1.6								
Meteoroid detector										8.93	3.2								
Cosmic dust detector	8	1.5		1.5	0.70	1.75	16.36	25	1.1		1.6			1.6	3.8				8
Solar X-rays and gamma-ray bursts		0.5			2.05										2.0				
Neutral atom detector	4	3		2.3		2.50	20.75	8								12.09			15
Energetic neutral atom detector				3.5		2.50	13.9	7	4.5						4.3	7.70			27
Lyman-alpha detector / UV measurements	1	0.5	2	0.4	3.43	0.30	6.6	5	1.2		0.7	4.5		4.4					4
Infrared measurements	20			3			34	15			2.0	30.2							
Imaging photopolarimeter											4.3	4.4		8.6					
Imaging system								30		8.93		38.2		10.5			48.1		
Common electronics, harness, boom, etc.		2	3					20					3.9			5.42	19.1		24
Totals	125	27	10	26.6	12.16	35.2	219.65	173.8	25.6	73.2/76.5	30.1	116.9	156.4	29.9	54.9	25.21	100.0	129.7	106
Spacecraft wet mass	N/A	~200	311.9	~246	147.15	549.5	N/A	N/A	517	370.0/376.5	252.1	825.4	756.54	478.3	366.7	104.9	623/658	665.4	N/A
Payload / Wet mass (fraction)		0.135	0.032	0.108	0.083	0.064			0.049	0.198/0.203	0.119	0.142	0.207	0.063	0.150	0.240	0.160/0.152	0.195	
B – as built; N - notional	N	N	N	N	N	N	N	N	N	в	В	в	В	В	В	В	В	в	Ν
														EBR					XX

APL

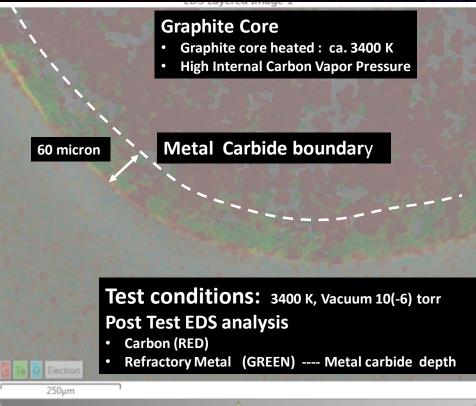
Mission Concepts are ALL Ballistic Low-thrust, in-space concepts limited by their mass-to-power ratios

- Option 1: Unpowered Jupiter Gravity Assist (JGA)
- Option 2: Active Jupiter Gravity Assist
 Final stage burn at Jupiter
- Option 3: JGA + Oberth Maneuver Near the Sun

22 staging cases with the SLS studied; guidance and control and thermal studies ongoing for solar Oberth scenario

Telecommunications Trade Space

Pointing Control	Frequency	Aperture Size	Ground Station	Transmit Power
Body-Fixed: dependent on S/C	X-band	Solid	Current DSN Capability	Total RTG power limited
Active Pointing: independent of S/C	Ka-band	Mesh / Membrane	ngVLA Capability	Failed RTG power limited/Extended Mission
	Optical		Telescope (e.g. Hale)	



Beam Pointing Control	Frequency Band	Aperture Size/ Technology	Ground Station Capability	Transmit Power Scaling
Body-Fixed: dependent on S/C	X-band	Solid	Current DSN Capability	Total RTG power limited
Active Pointing: independent of S/C	Ka-band	Membrane	ngVLA Capability	Failed RTG power limited
(APL) 3rd Interstellar Probe Exploration Workshi				16 November 2020 23

Determine Thermal Limits of Shield Material for an Oberth Maneuver

- Carbon fiber: lightweight with high strength
- High vapor pressure limits
- High density of refractory metals problematic
- Advanced Ceramic Fibers, LLC (ACF) working with Project to develop metal carbide (MC) layers on carbon cores (MC/C) to provide ultra high temperature (UHT) shield materials

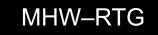
Mechanical Layout

- Developing all heliospheric science, large payload with Option 1 trajectory (passive Jupiter Gravity Assist) as baseline
- Alternate payloads and Option 2 trajectory (powered Jupiter Gravity Assist)
- Option 3 Solar Oberth maneuver to be studied next year (after thermal limits study completed)

Preliminary concept for slow spinner – all heliospheric science, 2/RTGs, 5-m diameter HGA

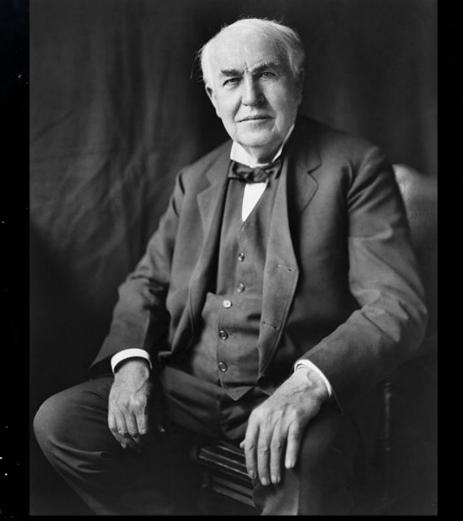
Power Requirements – Close to Historical

• NG-RTG: GPHS/MHW derivative RTG – efficiency and lifetime for use *in vacuo*



New Horizons with GPHS-RTG – Now in 14th year Voyager MHW-RTGs now in 43rd year

GPHS-RTG



One scenario: 24 February 2030...

APL

... with a caveat:

"Vision without execution is hallucination."

• — Thomas A. Edison

 Requirements must be commensurate with realistic cost estimates and funds – the key element of any successful mission

HUMANITY'S JOURNEY TO INTERSTELLAR SPACE

PROBE -